









CRESCENT

www.gearboxindia.com

# CRESCENT

COMPANY PROFILE

Sokhi Heli-Wom Gears specializes in the design, Development, production and marketing of high quality Crescent industrial gears and power transmission products, to the highest specifications, with proven performance in diverse industries across the globe. An accent on quality combined with on going research and development has given us an international reputation for excellence. Consequently, we are today one of the fastest growing company in this industry. Despite this growth, we ensure that our customers receive due attention, with higher quality products and scheduled deliveries.

As a customer focus & technology driven organization offering quality products & services is our forte. By updating technology & infrastructure, we have continued to deliver high value products to our customers. Our gears & gear boxes are widely available under the brand name "LREGLENT". Maintaining the pace with time, we have carved a niche for ourselves within the industry globally.

# **CRESCENT**



#### **DESIGN FEATURES**

Crescent gear units are a completely new design, advantages are :

- · More sizes with a reduced variety of parts.
- · Higher operational reliability combined with increased power capacity.
- · Predominantly non-contacting wear-resistant labyrinth seals are possible.
- Flanged output shafts to facilitate assembly of gear units in combined spaces (on request).

The basic gear unit can be optimally adapted to customer requirements by fitting different add-on pieces like motor bell housings, gear unit swing bases or backstops.

Crescent gear units have been designed according to a new unit construction principle. Through this, the variety of parts could be reduced. The parts are mainly on stock enabling the Crescent manufacturing plants nationwide deliver at short term.

#### HOUSINGS

The housings are of cast iron. If required, they may also be of steel. Housings are made in two part. The housing is rigid in design and due to its form has lesser noise and temperature characteristics

#### **GEAR & PINION**

The toothed components of the gear unit are case-hardened. The helical gear teeth are ground; depending on their size and transmission ratio. The high quality of the teeth leads to a. significant noise reduction and ensures safe and reliable running. The gear wheels are joined to the shafts by interference fits and parallel keys. These types of joints transmit the torques generated with adequate reliability.

#### LUBRICATION

Unless otherwise stated in the order documentation, the teeth and bearings are adequately splash-lubricated with oil by the gearwheels. This means that the gear units require very little maintenance.

In non-horizontal positions, with high bearing speeds or peripheral velocities on the teeth, the splash lubrication system may be replaced or supported by a pressure lubrication system.

The oil supply system is permanently attached to the gear unit and consists of a flange pump, a coarse filter, a pressure-monitoring device and pipework.

### SHAFT SEAL

Depending on requirements seals are mounted at the shaft exits to prevent oil from leaking from the housing and dirt from entering it.

#### FAN

The fan is mounted on a high-speed shaft of the gear unit and is protected from accidental contact by a cowl. The fan sucks air through the grid on the cover and blows it along the air ducts on the side of the gear housing. It thereby dissipates a certain amount of heat from the housing.

#### COOLING

Depending on requirement, the gear unit is fitted with a fan, a cooling coil, a water or air oil-cooling system or a separate oil supply system.

#### **PAINTING**

Gear cast finish: Internal and external surfaces are painted with linear epoxy primer. External surfaces are finished with alkyd semigloss blue paint. These paints are resistant to dilute acids and alkalis, oil and solvents, sea water and temperatures up to 140 degree centigrade.

#### **DIRECTION OF ROTATION**

The unit may be operated in either direction of rotation as per requirement.

#### EFFICIENCY

Efficiency of various geaboxes is : Single stage 99% Double 98% Triple stage 97.5% Quadruple stage 97%

#### CERTIFICATION

ISO 9001: 2000

#### QUALITY CONTROL

All the components of gearboxes undergo a very strict quality control check at different stages of production. Finish product are finally tested to ensure that no scope is left for complaints about noise, oil leakage temperature etc.



# **SELECTION PROCEDURES & EXAMPLE**

#### SELECTION PROCEDURE

Crescent H2 series extruder gearbox size is to be determined against rated output torque capacity in consideration with necessary service factor.

#### 1. Selection of Reducer

- Required gearbox ratio Input Speed/Output Speed.
- Select the nearest nominal ratio and corresponding actual ratio from available chart.
- Determine the required torque at output based on consumed load (\*) and output rpm.

Required Torque = (9550 X Actual reducer power X Service Factor)/Output speed.

The service factor is to be recommended between 1.5 to 2.0 depending upon the operating duration and loading characteristics. From the mechanical torque-rating table select a suitable size wherein the rated output torque meets to exceeds the required torque under point 1.4 with predetermined ratio.

#### 2. Check for Thermal Rating

- · Thermal ratings are listed for following cases-
  - A) Gearbox without additional cooling.
  - b) Gearbox fitted with cooling water coil.
- Determine the thermal service factor from table.
- Calculate the required thermal power capacity on the basis of absorbed power (\*) and thermal service factor correspondence to specified ambient temperature and running hours.
- Required thermal power (kW) = Absorbed power (kW) / thermal service factor.
- Check the type of cooling (with or without cooling coil) by referring to thermal capacity of gearbox taking from table.

Note:- (\*) - (In absence of consumed load, take motor power)

#### RATED EXAMPLE

Driving machine: Three phase A. C. motor.

Motor power = 25 h.p. = 18.650 kW.

Motor speed = n, = 1440 rpm.

Ratio =15:1

Diameter of Motor pulley = 6 inch.

Diameter of gearbox pulley = 16 inch.

Ambient temperature = 30°C.

Service = 1.5

#### SELECTION

#### 1. Selection of Reducer

The input speed is given to gearbox from motor through belt and pulley.

Hence Input Speed at gearbox = 1440X6

16

= 540 rpm

Output Speed at gearbox

= 540/15

= 3

= 36 rpm.

Select the nominal ratio from Table-1.2 as 15.40

Required output Torque of the gear box :
 T<sub>rnqu</sub> = 9550 X 18.650 X 1.5/36

= 7421.145 Nm

= 7.421.145 NM= 7.421 kNm

From the torque table-1.1 may be found the design H2-1 80 with maximum torque 7.610 KNm at 15.40 ratio.



### 2. Check for Thermal Rating

Let's assume that the gearbox is fitted with cooling coil.

Taking the thermal service factor at 30°C at 100% running time as 0.9.

· The required thermal power capacity:

Required thermal power (kW) = 18.650/0.9 = 20.72 kW
• From the thermal power table - 2.2 (with cooling coil).

Maximum thermal power = 135kW

I.e., Maximum thermal power > Required thermal power.

 $T_{requ}$  = Required output torque of gearbox in kNm.

 $N_1$  = Speed of the motor in rpm.

# 3. Check For thrust Bearing

 The screw diameter, working pressure, screw rpm and thrust bearing life expectancy are to be specified by the extruder manufacturers.

Calculate the thrust pressure (Fa) of the extruder screw from the following relationship.

$$Fa = \pi \frac{Ds^2}{4X10000} Pa$$

Calculate the thrust bearing capacity (Ca) on the following basis.

Ca = Fd X Fa X 
$$\left(\frac{\text{Lnh X 60 Xns}}{10^6}\right)^{\frac{3}{10}}$$

 Check the basic dynamic load rating (C) from thrust bearing table-3.1. The calculated capacity (Ca) must be equal to less than the catalogue rating (C).

#### Example

Screwdiameter = Ds = 80mm.

Working pressure = Pa = 500 bar.

Speed of the extruder screw = Ns = 100 rpm.

Thrust bearing life duration = Lnh = 20,000 hrs.

# Selection

• Thrust Pressure = Fa =  $\pi \frac{30000}{4 \times 10000}$  500 = 251 kN

• Thrust Pressure = Fa =  $\frac{\pi}{4}$  4X10000 500 = 251 kN • Thrust bearing capacity = Ca = 1.06 X 251 X  $\left(20000 \text{ X } 60 \text{ X} \frac{100}{1000000}\right)^{\frac{3}{10}}$  = 1119 kN.

Taking the value of basic dynamic load rating (C) from the table-3.1 (H<sub>2</sub>-180 Size)

C = 1170 kN i.e. C > Ca.

Hence the selection of bearing is safe. Where

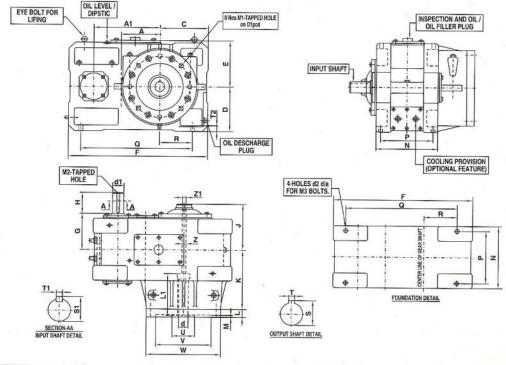
N<sub>s</sub> = Speed of extruder screw in rpm.

Fd = Factor of sense of rotation (max = 1.06)

Ds = Extruder screw diameter in mm.

Pa = Working pressure in bar.

Fa = Thrust pressure from extruder screw in kN.


Lnh = Bearing life duration in hours.

Ca = Required thrust bearing capacity in kN.

C = Basic dynamic load rating according to the table in kN.



# H 2 SERIES HELICAL EXTRUDER GEAR BOX



| SIZE       | . A | A1  | С   | D   | D1  | d                  | d1               | d2 | E   | F    | G   | Н   | J   | K   | L  | L1  | M  | M1  |
|------------|-----|-----|-----|-----|-----|--------------------|------------------|----|-----|------|-----|-----|-----|-----|----|-----|----|-----|
| H2-110 EXT | 110 | 190 | 145 | 125 | 160 | 30.041<br>30.020   | 28.015<br>28.002 | 14 | 140 | 415  | 112 | 50  | 136 | 160 | 26 | 90  | 7  | M12 |
| H2-125 EXT | 125 | 225 | 160 | 140 | 185 | 40.050<br>40.025   | 28.015<br>28.002 | 14 | 154 | 475  | 125 | 60  | 147 | 185 | 30 | 120 | 10 | M12 |
| H2-140 EXT | 140 | 240 | 175 | 160 | 220 | 45.050<br>45.025   | 32.018<br>32.002 | 14 | 174 | 515  | 140 | 80  | 145 | 220 | 30 | 135 | 10 | M16 |
| H2-160 EXT | 160 | 272 | 200 | 180 | 280 | 60.060<br>60.030   | 35.018<br>35.002 | 18 | 194 | 575  | 160 | 80  | 182 | 240 | 35 | 160 | 10 | M16 |
| H2-180 EXT | 180 | 305 | 210 | 200 | 320 | 75.060<br>75.030   | 38.018<br>38.002 | 18 | 214 | 630  | 175 | 80  | 218 | 273 | 40 | 200 | 10 | M16 |
| H2-200 EXT | 200 | 340 | 230 | 225 | 330 | 80.060<br>80.030   | 38.018<br>38.002 | 22 | 239 | 690  | 185 | 80  | 221 | 300 | 40 | 225 | 10 | M16 |
| H2-225 EXT | 225 | 385 | 250 | 250 | 370 | 90.036<br>90.071   | 45.018<br>45.002 | 22 | 267 | 770  | 205 | 110 | 264 | 335 | 45 | 240 | 10 | M20 |
| H2-250 EXT | 250 | 430 | 285 | 280 | 410 | 100.071<br>100.036 | 55.030<br>55.011 | 26 | 298 | 860  | 220 | 110 | 280 | 375 | 45 | 260 | 10 | M20 |
| H2-280 EXT | 280 | 480 | 315 | 315 | 460 | 105.071<br>105.036 | 65.030<br>65.011 | 26 | 327 | 950  | 240 | 140 | 300 | 400 | 50 | 280 | 10 | M20 |
| H2-315 EXT | 315 | 540 | 365 | 355 | 540 | 110.071<br>110.036 | 75.030<br>75.011 | 33 | 370 | 1090 | 260 | 140 | 315 | 410 | 50 | 300 | 10 | M20 |

| SIZE       | M2  | M3  | N   | P   | Q   | R     | S                  | S1               | Т                | T1               | T2 | U   | V                  | W   | Z  | Z1  |
|------------|-----|-----|-----|-----|-----|-------|--------------------|------------------|------------------|------------------|----|-----|--------------------|-----|----|-----|
| H2-110 EXT | M6  | M12 | 180 | 144 | 322 | 95    | 33.050<br>33.020   | 31.000<br>30.080 | 8.018<br>7.962   | 8.000<br>7.964   | 20 | 60  | 130.030            | 190 | 16 | M12 |
| H2-125 EXT | M6  | M12 | 200 | 160 | 365 | 105   | 43.050<br>43.030   | 31.000<br>30.080 | 12.022<br>11.978 | 8.000<br>7.964   | 20 | 70  | 150.040<br>150.000 | 220 | 20 | M16 |
| H2-140 EXT | M8  | M12 | 224 | 190 | 415 | 120   | 49.000<br>48.080   | 35.000<br>34.080 | 14.022<br>13.978 | 10.000<br>9.964  | 20 | 80  | 170.040<br>170.000 | 270 | 25 | M20 |
| H2-160 EXT | M8  | M16 | 260 | 225 | 460 | 145   | 64.060<br>64.040   | 38.000<br>37.080 | 18.022<br>17.978 | 10.000<br>9.964  | 20 | 110 | 230.048<br>230.000 | 330 | 34 | M30 |
| H2-180 EXT | M16 | M16 | 290 | 250 | 505 | 147.5 | 80.010<br>79.090   | 41.000<br>40.080 | 20.026<br>19.974 | 10.000<br>9.964  | 25 | 130 | 270.052<br>270.000 | 370 | 34 | M30 |
| H2-200 EXT | M16 | M20 | 310 | 265 | 560 | 165   | 85.060<br>85.040   | 41.000<br>40.080 | 22.026<br>21.974 | 10.000<br>9.964  | 25 | 140 | 280.052<br>280.000 | 380 | 45 | M36 |
| H2-225 EXT | M16 | M20 | 340 | 280 | 630 | 185   | 95.040<br>48.050   | 48.050<br>48.030 | 25.026<br>24.974 | 14.000<br>13,957 | 30 | 160 | 320.057<br>320.000 | 420 | 45 | M36 |
| H2-250 EXT | M24 | M24 | 370 | 300 | 710 | 210   | 106.060<br>106.040 | 59.000<br>58.080 | 28.026<br>27.974 | 16.000<br>15.957 | 30 | 180 | 360.057<br>360.000 | 460 | 45 | M36 |
| H2-280 EXT | M24 | M24 | 410 | 335 | 800 | 240   | 111.060<br>111.040 | 69.000<br>68.080 | 28.026<br>27.974 | 18.000<br>17.948 | 35 | 200 | 410.063<br>410.000 | 510 | 50 | M40 |
| H2-315 EXT | M24 | M30 | 450 | 375 | 900 | 270   | 116.060<br>116.040 | 79.053<br>79.023 | 28.026<br>27.974 | 20.000<br>19.948 | 40 | 240 | 490.063<br>490.000 | 590 | 50 | M40 |

NOTE: ALL DIMENSION ARE IN MM OTHERWISE SPECIFIED.



# RATIO OUTPUT TORQUE (kNm)

TABLE 1.1

| MIIOOU  | IFUI IOI | JOOL (KIN) | 11)  |      | IADLL I. | •      |       |       |        |       |
|---------|----------|------------|------|------|----------|--------|-------|-------|--------|-------|
| NOMINAL |          |            |      |      | UNI      | T SIZE |       |       |        |       |
| RATIO   | 110      | 125        | 140  | 160  | 180      | 200    | 225   | 250   | 280    | 315   |
| 5.60    | 1.56     | 2.90       | 2.93 | 4.41 | 5.50     | 7.58   | 11.04 | 13.65 | 24.12  | 32.25 |
| 6.20    | 1.71     | 3.03       | 3.02 | 4.62 | 5.84     | 7.83   | 11.17 | 16.57 | 24.39  | 32.44 |
| 6.86    | 1.90     | 3.02       | 3.34 | 5.10 | 6.45     | 8.63   | 11.90 | 17.44 | 25.81  | 34.23 |
| 7.59    | 2.09     | 3.03       | 3.68 | 5.20 | 6.90     | 9.12   | 11.96 | 18.38 | 26. 00 | 35.21 |
| 8.40    | 1.88     | 3.05       | 3.54 | 5.21 | 6.99     | 9.44   | 13.18 | 17.77 | 26.57  | 33.18 |
| 9.30    | 2.09     | 3.04       | 3.67 | 5.39 | 7.01     | 9.60   | 13.41 | 19.16 | 27.16  | 35.65 |
| 10.30   | 2.05     | 3.05       | 3.53 | 5.44 | 7.39     | 9.88   | 13.87 | 19.17 | 25.77  | 34.60 |
| 11.40   | 2.11     | 3.05       | 3.66 | 5.30 | 7.58     | 9.91   | 13.53 | 20.26 | 29.52  | 37.55 |
| 12.60   | 2.05     | 2.42       | 3.49 | 5.17 | 7.40     | 9.87   | 13.72 | 21.19 | 29.45  | 37.56 |
| 14.00   | 2.11     | 3.06       | 3.59 | 4.69 | 7.48     | 10.00  | 14.28 | 21.69 | 28.74  | 39.54 |
| 15.40   | 2.11     | 3.07       | 3.44 | 5.03 | 7.61     | 8.96   | 12.17 | 18.98 | 25.98  | 38.53 |
| 17.10   | 2.06     | 2.43       | 3.50 | 5.17 | 7.42     | 9.94   | 13.50 | 21.06 | 28.96  | 43.01 |
| 18.90   | 2.07     | 2.43       | 3.45 | 5.15 | 7.39     | 8.54   | 12.75 | 17.92 | 26.22  | 37.28 |
| 20.90   | 1.38     | 2.25       | 3.30 | 5.29 | 7.18     | 8.67   | 12.18 | 17.48 | 24.74  | 33.65 |
| 23.20   | 1.38     | 2.25       | 3.29 | 4.87 | 7.19     | 8.81   | 11.84 | 17.06 | 25.09  | 34.68 |
| 25.60   | 1.65     | 2.53       | 2.83 | 4.24 | 6.05     | 7.99   | 11.36 | 15.55 | 21.51  | 30.15 |

# **EXACT RATIO**

# TABLE 1.2

| AACI NA | 110    |        |                                         |        | INDLL 1.2 | •      |        |        |        |        |
|---------|--------|--------|-----------------------------------------|--------|-----------|--------|--------|--------|--------|--------|
| NOMINAL |        |        | ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( |        | UNI       | T SIZE | ×=     |        | /      |        |
| RATIO   | 110    | 125    | 140                                     | 160    | 180       | 200    | 225    | 250    | 280    | 315    |
| 5.60    | 5.689  | 5.562  | 5.636                                   | 5.648  | 5.657     | 5.625  | 5.670  | 5.599  | 5.625  | 5.648  |
| 6.20    | 6.249  | 6.281  | 6.078                                   | 6.240  | 6.214     | 6.250  | 6.300  | 6.245  | 6.250  | 6.300  |
| 6.86    | 6.943  | 6.758  | 6.814                                   | 6.895  | 6.875     | 6.905  | 6.848  | 6.978  | 6.875  | 7.000  |
| 7.59    | 7.667  | 7.528  | 7.590                                   | 7.693  | 7.663     | 7.595  | 7.565  | 7.585  | 7.595  | 7.609  |
| 8.40    | 8.500  | 8.611  | 8.333                                   | 8.362  | 8.427     | 8.472  | 8.500  | 8.680  | 8.333  | 8.546  |
| 9.30    | 9.444  | 9.265  | 9.342                                   | 9.449  | 9.323     | 9.319  | 9.390  | 9.435  | 9.206  | 9.289  |
| 10.30   | 10.389 | 10.262 | 10.348                                  | 10.489 | 10.370    | 10.450 | 10.434 | 10.151 | 10.357 | 10.272 |
| 11.40   | 11.479 | 11.272 | 11.366                                  | 11.522 | 11.474    | 11.269 | 11.522 | 11.711 | 11.296 | 11.530 |
| 12.60   | 12.511 | 12.647 | 12.505                                  | 12.802 | 12.600    | 12.664 | 12.750 | 12.958 | 12.667 | 12.812 |
| 14.00   | 14.081 | 14.018 | 14.135                                  | 14.167 | 13.941    | 14.200 | 14.167 | 13.941 | 14.250 | 14.167 |
| 15.40   | 15.678 | 15.160 | 15.287                                  | 15.441 | 15.260    | 15.462 | 15.512 | 15.500 | 15.167 | 15.261 |
| 17.10   | 17.088 | 17.010 | 16.818                                  | 17.197 | 17.121    | 17.337 | 17.236 | 16.676 | 17.062 | 16.875 |
| 18.90   | 18.638 | 18.918 | 18.706                                  | 19.003 | 18.529    | 19.211 | 19.111 | 18.918 | 18.984 | 18.958 |
| 20.90   | 20.595 | 20.475 | 20.759                                  | 20.759 | 20.250    | 20.759 | 20.531 | 20.912 | 20.759 | 20.759 |
| 23.20   | 23.018 | 23.000 | 23.319                                  | 23.066 | 22.781    | 23.003 | 22.765 | 23.724 | 23.098 | 23.312 |
| 25.60   | 25.757 | 25.875 | 25.840                                  | 25.757 | 25.845    | 25.594 | 25.575 | 25.845 | 25.594 | 25.57  |

# THERMAL CAPACITIES (kW) UNITS WITHOUT AUXILARY COOLING

TABLE 2.1

| NOMINAL |      |     |     |     | UNIT | SIZE |     |     |     |     |     |
|---------|------|-----|-----|-----|------|------|-----|-----|-----|-----|-----|
| RATIO   | 2    | 110 | 125 | 140 | 160  | 180  | 200 | 225 | 250 | 280 | 315 |
| 5.60    | 1500 | 18  | 21  | 29  | 36   | 46   | 82  | 102 | 125 | 160 | 220 |
| To      | 1000 | 17  | 20  | 27  | 34   | 44   | 82  | 100 | 121 | 156 | 220 |
| 11.4    | 750  | 16  | 19  | 27  | 33   | 43   | 76  | 96  | 115 | 150 | 203 |
| 12.6    | 1500 | 17  | 20  | 28  | 34   | 44   | 77  | 97  | 120 | 156 | 196 |
| To      | 1000 | 16  | 19  | 27  | 32   | 42   | 81  | 97  | 115 | 151 | 193 |
| 25.6    | 750  | 15  | 18  | 26  | 31   | 41   | 76  | 82  | 111 | 148 | 185 |



# UNITS WITH AUXILIARY COOLING

# TABLE 2.2

| NOMINAL            | INPUT        |     | UNIT SIZE |     |     |     |     |     |     |     |      |  |
|--------------------|--------------|-----|-----------|-----|-----|-----|-----|-----|-----|-----|------|--|
| RATIO              | SPEED<br>RPM | 110 | 125       | 140 | 160 | 180 | 200 | 225 | 250 | 280 | 315  |  |
| Z 00               | 1500         | 88  | 92        | 130 | 139 | 157 | 170 | 192 | 435 | 490 | 1040 |  |
| 5.60<br>TO<br>11.4 | 1000         | 87  | 90        | 129 | 139 | 155 | 168 | 188 | 403 | 447 | 940  |  |
| 11.4               | 750          | 86  | 90        | 127 | 136 | 152 | 165 | 185 | 385 | 422 | 877  |  |
| 12.6               | 1500         | 81  | 83        | 116 | 123 | 140 | 150 | 177 | 323 | 358 | 701  |  |
| TO<br>25.6         | 1000         | 80  | 82        | 116 | 122 | 138 | 147 | 174 | 325 | 353 | 647  |  |
| 20.0               | 750          | 79  | 82        | 113 | 120 | 135 | 145 | 170 | 326 | 354 | 627  |  |

# THERMAL SERVICE FACTOR

#### TABLE 2.3

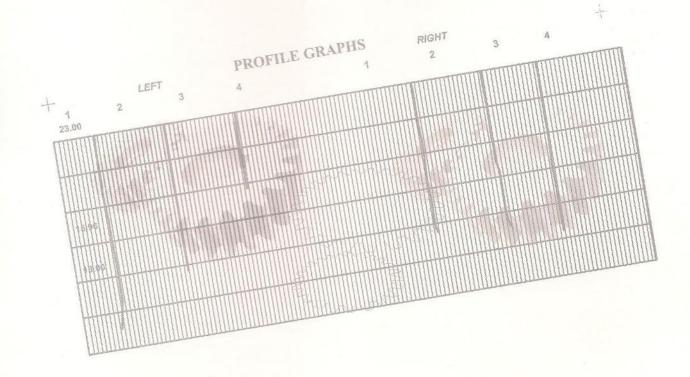
(Relative to ambient temperature and duration of operation)

| Type of               | Ambient             | Running Time in any hour |      |      |      |      |  |  |  |  |
|-----------------------|---------------------|--------------------------|------|------|------|------|--|--|--|--|
| cooling               | temperature -<br>°C | 100%                     | 80%  | 60%  | 40%  | 20%  |  |  |  |  |
|                       | 10                  | 1.12                     | 1.34 | 1.57 | 1.79 | 2.05 |  |  |  |  |
| Gearboxes             | 20                  | 1.00                     | 1.20 | 1.40 | 1.60 | 1.80 |  |  |  |  |
| without<br>additional | 30                  | 0.88                     | 1.06 | 1.23 | 1.41 | 1.58 |  |  |  |  |
| cooling               | 40                  | 0.75                     | 0.90 | 1.05 | 1.20 | 1.35 |  |  |  |  |
|                       | 50                  | 0.63                     | 0.76 | 0.88 | 1.01 | 1.13 |  |  |  |  |

| Type of         | Ambient       |      | Running Time in any hour |      |      |      |  |  |  |  |  |
|-----------------|---------------|------|--------------------------|------|------|------|--|--|--|--|--|
| cooling         | temperature C | 100% | 80%                      | 60%  | 40%  | 20%  |  |  |  |  |  |
|                 | 10            | 1.10 | 1.32                     | 1.54 | 1.76 | 1.98 |  |  |  |  |  |
| Gearboxes       | 20            | 1.00 | 1.20                     | 1.40 | 1.60 | 1.80 |  |  |  |  |  |
| with additional | 30            | 0.90 | 1.08                     | 1.26 | 1.44 | 1.62 |  |  |  |  |  |
| cooling         | 40            | 0.85 | 1.02                     | 1.19 | 1.36 | 1.53 |  |  |  |  |  |
|                 | 50            | 0.80 | 0.96                     | 1.12 | 1.29 | 1.44 |  |  |  |  |  |

TABLE 3.1

|              | Т                                 | HRUST BEARING DATA    | 1                                                    |                              |  |  |  |
|--------------|-----------------------------------|-----------------------|------------------------------------------------------|------------------------------|--|--|--|
|              | SPHERICAL ROLLER                  | BASIC DYNAMIC         | OUTPUT SHAFT                                         |                              |  |  |  |
| GEARBOX SIZE | THRUST BEARING<br>(STANDARD SIZE) | LOAD RATING<br>C (KN) | MAX. POSSIBLE BORE<br>DID HAVING<br>STD. KEYWAY (MM) | STANDARD BORE<br>LENGTH (MM) |  |  |  |
| H2- 110      | 2229412                           | 345                   | 30                                                   | 90                           |  |  |  |
| H2 -125      | 2229414                           | 449                   | 40                                                   | 120                          |  |  |  |
| H2- 140      | 2229416                           | 575                   | 45                                                   | 135                          |  |  |  |
| H2- 160      | 2229422                           | 1010                  | 60                                                   | 160                          |  |  |  |
| H2- 180      | 2229426                           | 1380                  | 75                                                   | 200                          |  |  |  |
| H2 - 200     | 2229428                           | 1400                  | 80                                                   | 225                          |  |  |  |
| H2 - 225     | 2229432                           | 1790                  | 90                                                   | 240                          |  |  |  |
| H2 - 250     | 2229436                           | 2250                  | 100                                                  | 260                          |  |  |  |
| H2 - 280     | 2229440                           | 2760                  | 105                                                  | 280                          |  |  |  |
| H2 - 315     | 2229448                           | 2990                  | 110                                                  | 300                          |  |  |  |


TABLE 3.2

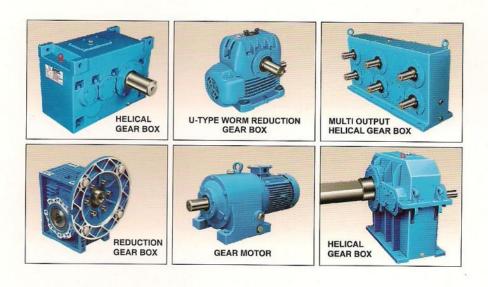
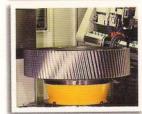
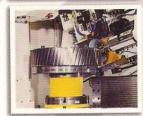

| APPRO    | XIMATE WEIG         | HT AND OIL CA      | PACITY                |
|----------|---------------------|--------------------|-----------------------|
| SIZE     | NET WEIGHT<br>(KGS) | CROSS WEIGHT (KGS) | OIL QUANTITY<br>(ITS) |
| H2 - 110 | 130                 | 140                | 6                     |
| H2 - 125 | 180                 | 200                | 7                     |
| H2 - 140 | 250                 | 275                | 8                     |
| H2 - 160 | 300                 | 330                | 12                    |
| H2 - 180 | 345                 | 380                | 16                    |
| H2 - 200 | 395                 | 435                | 22                    |
| H2 - 225 | 520                 | 570                | 30                    |
| H2 - 250 | 660                 | 720                | 38                    |
| H2 - 280 | 725                 | 780                | 48                    |
| H2 - 315 | 800                 | 860                | 65                    |

TABLE 3.3


| RECOMMENDED         | LUBRICANT ISO Vg320      |
|---------------------|--------------------------|
| Brand               | Grade                    |
| Balmer Lawrie       | Protomac Sp 320          |
| Bharat Petroleum    | Cabol 320 or Amoicam 320 |
| Castrol             | Alpha Zn 320             |
| Gulf                | Harmony 320              |
| Hindustan Petrolium | Enklo 320                |
| Indian Oil          | Servomesh Sp 320         |
| Veedol              | Avalon 320               |






















# SOKHI HELI-WOM GEARS PVT. LTD.

61/22-25, SITE-IV, INDUSTRIAL AREA SAHIBABAD, GHAZIABAD-201010 (U.P) TEL.: 0120-4344400-09, 2895966, 2896006, 2896214 FAX: 0120-2895967, 4168468 E-mail - sokhi@gearboxindia.com sokhi@del2.vsnl.net.in